Intrinsically Chiral Aromaticity. Rules Incorporating Linking Number, Twist, and Writhe for Higher-Twist Möbius Annulenes [J. Am. Chem. Soc. 2008, 130, 7613-7619]. Shay M. Rappaport and Henry S. Rzepa*

Page 7616. The rotation angle, defined in the original article as eq 13 and used in eq 12, is calculated as the difference between two angles:

$$
\begin{equation*}
\gamma_{n}=\gamma_{n}^{(2)}-\gamma_{n}^{(1)} \tag{1}
\end{equation*}
$$

A more precise definition of these terms is given by

$$
\begin{gather*}
\gamma_{n}^{(1)}=\operatorname{sgn}\left[\left(\hat{b}_{n} \times \hat{t}_{n}^{(1)}\right) \cdot \hat{t}_{n}\right] \arccos \left(\hat{b}_{n} \cdot \hat{t}_{n}^{(1)}\right) \\
\gamma_{n}^{(2)}=\operatorname{sgn}\left[\left(\hat{b}_{n} \times \hat{t}_{n+1}^{(1)}\right) \cdot \hat{t}_{n+1}\right] \arccos \left(\hat{b}_{n} \cdot \hat{t}_{n+1}^{(1)}\right) \tag{2}
\end{gather*}
$$

where $\gamma_{n}^{(1)}$ and $\gamma_{n}^{(2)}$ are the angles of the nth and $(n+1)$ th rod's $\hat{t}^{(1)}$ vectors relative to the rotation plane (i.e., the plane defined by the two successive segments), represented by the binormal,

$$
\begin{equation*}
\hat{b}_{n}=\frac{\hat{t}_{n} \times \hat{t}_{n+1}}{\left|\hat{t}_{n} \times \hat{t}_{n+1}\right|} \tag{3}
\end{equation*}
$$

The rod's vector must be orthogonal to the curve (i.e., to the tangent vector) and is defined as $\hat{t}_{n}^{(1)}=\left(\hat{t}_{n} \times \hat{\rho}_{n}\right)\left|\hat{t}_{n} \times \hat{\rho}_{n}\right|^{-1}$, where $\hat{\rho}_{n}$ is the orbital orientation to the nth carbon.

Note that, although in principle $\left|\gamma_{n}\right|$ may be higher than π, this definition is unique and not degenerate only in the range $[-\pi, \pi]$.

JA100035P

10.1021/ja100035p

Published on Web 03/04/2010

